CHANGES IN CELLULAR PARAMETERS IN PERIPHERAL BLOOD ANALYSIS DURING COVID-19 INFECTION AND THEIR PATHOGENETIC ASPECTS

Authors

DOI:

https://doi.org/10.32782/2306-2436.15.1.2025.322

Keywords:

peripheral blood, cellular composition, coronavirus infection, pathogenesis

Abstract

Peripheral blood disorders and the mechanisms of their occurrence in severe acute respiratory syndrome caused by the SARS-CoV-2 coronavirus remain not fully understood, but are of practical importance. The aim of the study was to review the literature containing data on changes in cellular parameters in the analysis of peripheral blood and their pathogenesis in COVID-19 infection. The most common hematological changes included: lymphocytosis and lymphocytopenia, neutrophilia, mild thrombocytopenia, and less commonly thrombocytosis. The ratio of lymphocytes to monocytes is usually low, but could be normal or elevated. SARS-CoV-2 RNA load and lymphocyte count, CD4+ T-lymphocyte count, and CD8+ T-lymphocyte count had a linear negative correlation. Researcher reports vary on white blood cell counts in patients with COVID-19. Patients with COVID-19 are predisposed to eosinopenia. Potential mechanisms leading to a deficiency of lymphocytes include the following: the virus can directly affect lymphocytes, which leads to their death; lymphocytes express the coronavirus receptor, angiotensin-converting enzyme, which is the target of the virus; apoptosis of lymphocytes can be caused by a cytokine storm, the activation of which is associated with atrophy of lymphoid organs, including the spleen, by the direct influence of the virus; the concomitant lactic acidosis inhibits lymphocyte proliferation by blocking the export of lactic acid in T cells. The indicator of lymphocytopenia is an undoubted marker of the severity of the course of COVID 19. Like most viruses that affect the hematopoiesis and the immune system, COVID-19, due to inflammatory mechanisms and effects on the myelopoiesis system, optimizes the release of immature blood cells from the bone marrow. SARS-CoV-2 can enter hematopoietic stem/progenitor cells and the microenvironment via ACE2, CD13, or CD66a receptors, resulting in cell apoptosis, inhibition of cell proliferation, and pancytopenia.

References

1. Ruan Q., Yang K., Wang W. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020. Vol. 46, № 6. P. 1294–1297. DOI: 10.1007/s00134-020-06028-z.

2. Wu C., Chen X., Cai Y. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020. Vol. 180, № 7. P. 934–943. DOI: 10.1001/jamainternmed.2020.0994.

3. Frater J.L., Zini G., d’Onofrio G., Rogers H.J. COVID-19 and clinical hematology laboratory. Int. J. Lab. Hematol. 2020. Vol. 42, Suppl. 1. P. 11–18. DOI: 10.1111/ijlh.13229.

4. Huang C., Wang Y., Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020. Vol. 395, № 10223 (15–21 Feb). P. 497–506. DOI: 10.1016/S0140-6736(20)30183-5.

5. Melnik A.A. [Non-virological laboratory markers in the context of COVID-19 disease]. News of medicine and pharmacy. 2020. № 6–7 (724–725). P. 12–14. URL: http://www.mif-ua.com/archive/article/49417.

6. Wang D., Hu B., Hu C. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus – Infected Pneumonia in Wuhan, China. JAMA. 2020. Vol. 323, № 11. P. 1061–1069. DOI: 10.1001/jama.2020.1585.

7. Chen N., Zhou M., Dong X. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020. Vol. 395, № 10223. P. 507–513. DOI: 10.1016/S0140-6736(20)30211-7.

8. Qian G.Q., Yang N.B., Ding F. Epidemiologic and Clinical Characteristics of 91 Hospitalized Patients with COVID-19 in Zhejiang, China: A retrospective, multi-centre case series. QJM. 2020. Vol. 113, № 7. P. 474–481. DOI: 10.1093/qjmed/hcaa089.

9. Guan W., Ni Z., Hu Y. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020. Vol. 382. P. 1708–1720. DOI: 10.1056/NEJMoa2002032.

10. Lippi G., Plebani M., Henry B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis Clin. Chim. Acta. 2020. Vol. 506. P. 145–148. DOI: 10.1016/j.cca.2020.03.022.

11. Qu R., Ling Y., Zhang Y. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J. Med. Virol. 2020. Vol. 92, № 9. P. 1533–1541. DOI: 10.1002/jmv.25767.

12. Young B.E., Ong S.W.X., Kalimuddin S. et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020. Vol. 323, № 15. P. 1488–1494. DOI: 10.1001/jama.2020.3204.

13. Fan B.E., Chong V.C.L., Chan S.S.W. Hematologic parameters in patients with COVID-19 infection. Am. J. Hematol. 2020. Vol. 95, № 6. P. E131–E134. DOI: 10.1002/ajh.25774.

14. Gajendra S. Spectrum of hematological changes in COVID-19. Am. J. Blood Res. 2022. Vol. 12, № 1. P. 43–53. PMID: 35291254. URL: https://pubmed.ncbi.nlm.nih.gov/35291254/.

15. Zhang D., Guo R., Lei L. Frontline science: COVID-19 infection induces readily detectable morphologic and inflammation-related phenotypic changes in peripheral blood monocytes. J. Leukoc. Biol. 2021. Vol. 109, № 1. P. 13–22. DOI: 10.1002/JLB.4HI0720-470R.

16. Jain S., Meena R., Kumar V. Comparison of hematologic abnormalities between hospitalized coronavirus disease 2019 positive and negative patients with correlation to disease severity and outcome. J. Med. Virol. 2022. Vol. 94. P. 3757–3767. DOI: 10.1002/jmv.27793.

17. Liu Y., Liao W., Wan L. Correlation between relative nasopharyngeal virus RNA load and lymphocyte count disease severity in patients with COVID-19 Immunol. 2021. Vol. 34, № 5. P. 330–335. DOI: 10.1089/vim.2020.0062.

18. Xiaoping Y., Li D., Yu Z. A mild type of childhood Covid-19 – A case report. Radiol. Infect. Dis. 2020. Vol. 7, № 2. DOI: 10.1016/j.jrid.2020.03.004.

19. Lippi G., Plebani M. The critical role of laboratory medicine during coronavirus disease 2019 (COVID-19) and other viral outbreaks. Clin. Chem. Lab. Med. 2020. Vol. 58, № 7. P. 1063–1069. DOI: 10.1515/cclm-2020-0240.

20. Mehta P., McAuley D.F., Brown M. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020. Vol. 395, № 10229. P. 1033–1034. DOI: 10.1016/S0140-6736(20)30628-0.

21. Li Y.X., Wu W., Yang T. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19. Zhonghua Nei Ke Za Zhi. 2020. Vol. 59. P. E003. DOI: 3760.10/cma.j.cn112138-20200221-00114.

22. Murphy P., Glavey S., Quinn J. Anemia and red blood cell abnormalities in COVID-19. Leuk. Lymphoma. 2021. Vol. 62, № 6. P. 1539. DOI: 10.1080/10428194.2020.1869967.

23. Spencer H.C., Wurzburger R. COVID-19 presents as neutropenic fever. Ann. Hematol. 2020. Vol. 99, № 8. P. 1939–1940. DOI: 10.1007/s00277-020-04128-w.

24. Li Q., Cao Y., Chen L. Hematological features of individuals with COVID-19. Leukemia. 2020. Vol. 34, № 8. P. 2163–2172. DOI: 10.1038/s41375-020-0910-1.

25. Sharma H.K. Atypical presentation of COVID-19 as acute leukemia: a clinical case. Int. J. Acad. Med. Pharm. 2021. Vol. 3, № 2. P. 189–191. DOI: 10.29228/jamp.48437.

26. Aladily T.N., Alnahhal J., Alshorman A., Awidi A. Transient increase in blast count following COVID-19 infection mimicking acute leukemia. Int. J. Lab. Hematol. 2021. Vol. 43, № 3. P. 339–340. DOI: 10.1111/ijlh.13431.

27. Tabriz H.M., Nazar E., Jazayeri F., Javadi A.E. Hematologic presentations of COVID-19 can be misinterpreted as acute myeloid leukemia. Asian Pac. J. Cancer Biol. 2021. Vol. 6, № 3. P. 231–233. DOI: 10.31557/apjcb.2021.6.3.231-233.

28. Florian L., Evelyn O., Jana K., Heudobler D. Coronavirus disease 2019 induces multi-lineage, morphologic changes in peripheral blood cells. eJ. Haem. 2020. Vol. 1, № 1. URL: https://www.nature.com/articles/s41375-020-0910-1.

29. Wang F., Nie J., Wang H. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J. Infect. Dis. 2020. Vol. 221, № 11. P. 1762–1769. DOI: 10.1093/infdis/jiaa150.

30. Zhu N., Zhang D., Wang W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020. Vol. 382. P. 727–733. DOI: 10.1056/NEJMoa2001017.

31. Liao Y.C., Liang W.G., Chen F.W. IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J. Immunol. 2002. Vol. 169, № 8. P. 4288–4297. DOI: 10.4049/jimmunol.169.8.4288.

32. Chan J.F., Zhang A.J., Yuan S. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 2020. Vol. 71. P. 2428–2446. – DOI: 10.1093/cid/ciaa325.

33. Fischer K., Hoffmann P., Voelkl S. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007. Vol. 109. P. 3812–3819. DOI: 10.1182/blood-2006-07-035972.

34. Maryame A., Fadwa O., Nejjari S. Smear Findings in COVID-19. Turk. J. Haematol. 2020. Vol. 37, № 4. P. 301–302. DOI: 10.4274/tjh.galenos.2020.2020.0262.

35. Haznedaroglu I.C., Oztürk M.A. Towards the understanding of the local hematopoietic bone marrow renin-angiotensin system. Int. J. Biochem. Cell Biol. 2003. Vol. 35. P. 867–880. DOI: 10.1016/s1357-2725(02)00278-9.

36. Oliveira Toledo S.L., Sousa Nogueira L., das Graças Carvalho M., et al. COVID-19: review and hematologic impact. Clin. Chim. Acta. 2020. Vol. 510. P. 170–176. DOI: 10.1016/j.cca.2020.07.016.

37. Strawn W.B., Richmond R.S., Tallant A.E. Renin-angiotensin system expression in rat bone marrow haematopoietic and stromal cells. Br. J. Haematol. 2004. Vol. 126. P. 120–126. DOI: 10.1111/j.1365-2141.2004.04998.x.

38. Terpos E., Ntanasis-Stathopoulos I., Elalamy I. Hematological findings and complications of COVID-19. Am. J. Hematol. 2020. Vol. 95. P. 834–847. DOI: 10.1002/ajh.25829.

39. Shang J., Ye G., Shi K. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020. Vol. 581. P. 1–8. DOI: 10.1038/s41586-020-2179-y.

40. Sun D.W., Zhang D., Tian R.H. The underlying changes and predicting role of peripheral blood inflammatory cells in severe COVID-19 patients: A sentinel? Clin. Chim. Acta. 2020. Vol. 508. P. 122–129. DOI: 10.1016/j.cca.2020.05.027.

41. Du Y., Tu L., Zhu P. Clinical features of 85 fatal cases of COVID-19 from Wuhan: a retrospective observational study. Am. J. Respir. Crit. Care Med. 2020. Vol. 201. P. 1372–1379. DOI: 10.1164/rccm.202003-0543OC.

42. Fraissé M., Logre E., Mentec H. Eosinophilia in critically ill COVID-19 patients: a French monocenter retrospective study. Crit. Care. 2020. Vol. 24. P. 635. DOI: 10.1186/s13054-020-03361-z.

43. Xu H., Zhong L., Deng J. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 2020. Vol. 12. P. 8. DOI: 10.1038/s41368-020-0074-x.

44. Pavord S., Thachil J., Hunt B.J. Practical guidance for the management of adults with immune thrombocytopenia during the COVID-19 pandemic. Br. J. Haematol. 2020. Vol. 189. P. 1038–1043. DOI: 10.1111/bjh.16775.

45. Aggarwal M., Dass J., Mahapatra M. Hemostatic abnormalities in COVID-19: an update. Indian J. Hematol. Blood Transfus. 2020. Vol. 36. P. 1–11. DOI: 10.1007/s12288-020-01328-2.

46. Zhang Y., Zeng X., Jiao Y. Mechanisms of development of thrombocytopenia in patients with COVID-19: thrombosis study. Thromb. Res. 2020. Vol. 193. P. 110–115. DOI: 10.1016/j.thromres.2020.06.008.

Published

2025-05-15